Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            abstract In this article marking the 40th anniversary of the US National Science Foundation's Long Term Ecological Research (LTER) Network, we describe how a long-term ecological research perspective facilitates insights into an ecosystem's response to climate change. At all 28 LTER sites, from the Arctic to Antarctica, air temperature and moisture variability have increased since 1930, with increased disturbance frequency and severity and unprecedented disturbance types. LTER research documents the responses to these changes, including altered primary production, enhanced cycling of organic and inorganic matter, and changes in populations and communities. Although some responses are shared among diverse ecosystems, most are unique, involving region-specific drivers of change, interactions among multiple climate change drivers, and interactions with other human activities. Ecosystem responses to climate change are just beginning to emerge, and as climate change accelerates, long-term ecological research is crucial to understand, mitigate, and adapt to ecosystem responses to climate change.more » « less
- 
            Abstract Forest and freshwater ecosystems are tightly linked and together provide important ecosystem services, but climate change is affecting their species composition, structure, and function. Research at nine US Long Term Ecological Research sites reveals complex interactions and cascading effects of climate change, some of which feed back into the climate system. Air temperature has increased at all sites, and those in the Northeast have become wetter, whereas sites in the Northwest and Alaska have become slightly drier. These changes have altered streamflow and affected ecosystem processes, including primary production, carbon storage, water and nutrient cycling, and community dynamics. At some sites, the direct effects of climate change are the dominant driver altering ecosystems, whereas at other sites indirect effects or disturbances and stressors unrelated to climate change are more important. Long-term studies are critical for understanding the impacts of climate change on forest and freshwater ecosystems.more » « less
- 
            Seventy years of watershed response to floods and changing forestry practices in western Oregon, USAAbstract This study examined the 70‐year history of clearcutting of old‐growth forest and associated road construction, floods, landslides, large wood in rivers, and channel change in the 64 km2Lookout Creek watershed in western Oregon, where forestry practices began in 1950 and largely ceased by the 1980s. Responses differed among three zones with distinctive geomorphic processes within the watershed: a glacially sculpted zone, an earthflow‐dominated zone, and a debris slide and debris flow‐dominated zone. Watershed response to floods was more related to the timing of road construction and clearcuts, past geomorphic events, and forest dynamics than to flood magnitude. Even small (1–3 year) floods generated geomorphic responses in the period of initial road construction and logging (1950–1964) and during ongoing logging in the early part of a 30‐year period between large flood events (1966–1995). The floods of 1964/65, 15 years after the onset of logging, produced much larger geomorphic responses than the flood of record (1996), more than a decade after logging ceased. Geomorphic response was negligible for the third largest event on record (2011) during the last period (1997–2020), when former clearcuts were 20 to 70‐year‐old forest plantations. Watershed response in each of five distinct time periods depended on conditions created during prior periods in the three zones. Understanding of watershed response to forestry requires integrated observation of forestry practices, floods, landslide susceptibility, wood delivery and movement, and channel change on time scales that capture responses to past and ongoing management practices and geophysical and biological factors and events.more » « less
- 
            Abstract Long‐term watershed experiments provide the opportunity to understand forest hydrology responses to past logging, road construction, forest regrowth, and their interactions with climate and geomorphic processes such as road‐related landslides. We examined a 50‐year record from paired‐watershed experiments in the H. J. Andrews Experimental Forest, Oregon, USA in which 125 to 450‐year‐old conifer forests were harvested in the 1960s and 1970s and converted to planted conifer forests. We evaluated how quickflow and delayed flow for 1222 events in treated and reference watersheds changed by season after clearcutting and road construction, including 50 years of growth of planted forest, major floods, and multi‐decade reductions in snowpack. Quickflow runoff early in the water year (fall) increased by up to +99% in the first decade, declining to below pre‐harvest levels (−1% to −15%) by the third to fifth decade after clearcutting. Fall delayed flow responded more dramatically than quickflow and fell below pre‐treatment levels in all watersheds by the fifth decade, consistent with increased transpiration in the planted forests. Quickflow increased less (+12% to 70%) during the winter and spring but remained higher than pre‐treatment levels throughout the fourth or fifth decade, potentially impacted by post‐harvest burning, roads, and landslides. Quickflow remained high throughout the 50‐year period of study, and much higher than delayed flow in the last two decades in a watershed in which road‐related changes in flow routing and debris flows after the flood of record increased network connectivity. A long‐term decline in regional snowpack was not clearly associated with responses of treated vs. reference watersheds. Hydrologic processes altered by harvest of old‐growth conifer forest more than 50 years ago (transpiration, interception, snowmelt, and flow routing) continued to modify streamflow, with no clear evidence of hydrologic recovery. These findings underscore the importance of continued long‐term watershed experiments.more » « less
- 
            Abstract Around the world, long‐term changes in the timing and magnitude of streamflow are testing the ability of large managed water resource systems constructed in the 20th century to continue to meet objectives in the 21st century. Streamflow records for unregulated rivers upstream of reservoirs can be combined with records downstream of reservoirs using a paired‐watershed framework and concepts of water resource system performance to assess how reservoir management has responded to long‐term change. Using publicly available data, this study quantified how the intra‐annual timing of inflows and outflows of 25 major reservoirs has shifted, how management has responded, and how this has influenced reliability and vulnerability of the water resource system in the 668,000 km2Columbia River basin from 1950 to 2012. Reservoir inflows increased slightly in early spring and declined in late spring to early fall, but reservoir outflows increased in late summer from 1950 to 2012. Average inflows to reservoirs in the low flow period exceeded outflows in the1950s, but inflows are now less than outflows. Reservoirs have increased hedging, that is, they have stored more water during the spring, in order to meet the widening gap between inflows and outflows during the summer low flow period. For a given level of reliability (the fraction of time flow targets were met), vulnerability (the maximum departure from the flow target) was greater during periods with lower than average inflows. Thus, the water management system in this large river basin has adjusted to multi‐decade trends of declining inflows, but vulnerability, that is, the potential for excess releases in spring and shortfalls in summer, has increased. This study demonstrates the value of combining publicly available historical data on streamflow with concepts from paired‐watershed analyses and metrics of water resource performance to detect, evaluate, and manage water resource systems in large river basins.more » « less
- 
            ABSTRACT MotivationHere, we make available a second version of the BioTIME database, which compiles records of abundance estimates for species in sample events of ecological assemblages through time. The updated version expands version 1.0 of the database by doubling the number of studies and includes substantial additional curation to the taxonomic accuracy of the records, as well as the metadata. Moreover, we now provide an R package (BioTIMEr) to facilitate use of the database. Main Types of Variables IncludedThe database is composed of one main data table containing the abundance records and 11 metadata tables. The data are organised in a hierarchy of scales where 11,989,233 records are nested in 1,603,067 sample events, from 553,253 sampling locations, which are nested in 708 studies. A study is defined as a sampling methodology applied to an assemblage for a minimum of 2 years. Spatial Location and GrainSampling locations in BioTIME are distributed across the planet, including marine, terrestrial and freshwater realms. Spatial grain size and extent vary across studies depending on sampling methodology. We recommend gridding of sampling locations into areas of consistent size. Time Period and GrainThe earliest time series in BioTIME start in 1874, and the most recent records are from 2023. Temporal grain and duration vary across studies. We recommend doing sample‐level rarefaction to ensure consistent sampling effort through time before calculating any diversity metric. Major Taxa and Level of MeasurementThe database includes any eukaryotic taxa, with a combined total of 56,400 taxa. Software Formatcsv and. SQL.more » « lessFree, publicly-accessible full text available May 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
